Area asymmetry of heart rate variability signal
نویسندگان
چکیده
BACKGROUND Heart rate fluctuates beat-by-beat asymmetrically which is known as heart rate asymmetry (HRA). It is challenging to assess HRA robustly based on short-term heartbeat interval series. METHOD An area index (AI) was developed that combines the distance and phase angle information of points in the Poincaré plot. To test its performance, the AI was used to classify subjects with: (i) arrhythmia, and (ii) congestive heart failure, from the corresponding healthy controls. For comparison, the existing Porta's index (PI), Guzik's index (GI), and slope index (SI) were calculated. To test the effect of data length, we performed the analyses separately using long-term heartbeat interval series (derived from >3.6-h ECG) and short-term segments (with length of 500 intervals). A second short-term analysis was further carried out on series extracted from 5-min ECG. RESULTS For long-term data, SI showed acceptable performance for both tasks, i.e., for task i p < 0.001, Cohen's d = 0.93, AUC (area under the receiver-operating characteristic curve) = 0.86; for task ii p < 0.001, d = 0.88, AUC = 0.75. AI performed well for task ii (p < 0.001, d = 1.0, AUC = 0.78); for task i, though the difference was statistically significant (p < 0.001, AUC = 0.76), the effect size was small (d = 0.11). PI and GI failed in both tasks (p > 0.05, d < 0.4, AUC < 0.7 for all). However, for short-term segments, AI indicated better distinguishability for both tasks, i.e., for task i, p < 0.001, d = 0.71, AUC = 0.71; for task ii, p < 0.001, d = 0.93, AUC = 0.74. The rest three measures all failed with small effect sizes and AUC values (d < 0.5, AUC < 0.7 for all) although the difference in SI for task i was statistically significant (p < 0.001). Besides, AI displayed smaller variations across different short-term segments, indicating more robust performance. Results from the second short-term analysis were in keeping with those findings. CONCLUSION The proposed AI indicated better performance especially for short-term heartbeat interval data, suggesting potential in the ambulatory application of cardiovascular monitoring.
منابع مشابه
تغییرپذیری ضربان قلب Heart rate variability))
Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...
متن کاملتغییرپذیری ضربان قلب Heart rate variability))
Abstract Many studies have been conducted on heart rate variability. Variability in the heart signal of two sequential beats is called heart rate variability (HRV). Short- and long- term variability reflects autonomic nervous system function, so that increased or decreased heart rate variability (HRV) is an indicator of human health. So, the analysis of these changes can predict sudden death...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملHeart-Brain Coherence; Heart-Rate Variability (HRV); Reading Anxiety; TestEdge Program
Based on psychophysiological research, coherent heart-brain interaction can change afferent cardiac signal pattern sent to the brain. Accordingly, the present study aimed at facilitating the emotion-cognition interaction through HeartMath Institute self-regulated emotional techniques to investigate the efficacy of heart-brain coherence on reading anxiety reduction that significantly enhances at...
متن کاملAnalysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance
In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...
متن کاملAnalysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance
In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017